
Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Prediction of Infinite Words with Automata

Tim Smith

Received: date / Accepted: date

Abstract In the classic problem of sequence prediction, a predictor receives
a sequence of values from an emitter and tries to guess the next value before it
appears. The predictor masters the emitter if there is a point after which all of
the predictor’s guesses are correct. In this paper we consider the case in which
the predictor is an automaton and the emitted values are drawn from a finite
set; i.e., the emitted sequence is an infinite word. We examine the predictive
capabilities of finite automata, pushdown automata, stack automata (a gen-
eralization of pushdown automata), and multihead finite automata. We relate
our predicting automata to purely periodic words, ultimately periodic words,
and multilinear words, describing novel prediction algorithms for mastering
these sequences.

Keywords sequence prediction · automaton · infinite word

1 Introduction

One motivation for studying prediction of infinite words comes from its po-
sition as a kind of underlying “simplest case” of other prediction tasks. For
example, take the problem of designing an intelligent agent, a purposeful au-
tonomous entity able to explore and interact with its environment. At each
moment, it receives data from its sensors, which it stores in its memory. We
would like the agent to analyze the data it is receiving, so that it can make
predictions about future data and carry out actions in the world on the basis

This journal paper comprises the full version of the author’s conference paper [23].

T. Smith
Northeastern University
Boston, MA, USA
Université Paris-Est Marne-la-Vallée
Champs-sur-Marne, France
E-mail: tim.smith@u-pem.fr

2 Tim Smith

of those predictions. That is, we would like the agent to discover the laws of
nature governing its environment.

Without any constraints on the problem, this is a formidable task. The
data being received by the agent might be present in multiple channels, cor-
responding to sight, hearing, touch, and other senses, and in each channel the
data given at each instant could have a complex structure, e.g. a visual field
or tactile array. The data source could be nondeterministic or probabilistic,
and furthermore could be sensitive to actions taken by the agent, leading to a
feedback loop between the agent and its environment. The laws governing the
environment could be mathematical in nature or arise from intensive compu-
tational processing.

A natural approach to tackling such a complex problem is to start with
the easiest case. How, then, can we simplify the above scenario? First, say
that instead of receiving data through multiple channels, the agent has only
a single channel of data. And say that instead of the data having a complex
structure like a visual field, it simply consists of a succession of symbols, and
that the set of possible symbols is finite. Say that the data source is completely
deterministic, and moreover that the data is not sensitive to the actions or
predictions of the agent, but is simply output one symbol at a time without
depending on any input.

Under these simplifying assumptions, the problem we are left with is that
of predicting an infinite word. That is, the agent’s environment now consists
of some infinite word, which it is the agent’s task to predict on the basis of the
symbols it has seen so far. We hope that by exploring and making progress in
this simple setting, we can develop techniques which may help with the more
general prediction problems encountered in the original scenario.

1.1 Our contributions

In this paper, we consider the case in which the predictor in the above setting
is an automaton. In our model, a predicting automaton M takes as input
an infinite word α and produces as output an infinite word M(α), with the
restriction that for each i ≥ 1, M must output the ith symbol of M(α) before
it can read beyond the i− 1th symbol of α. If there is an n ≥ 1 such that for
every i ≥ n, the ith symbol of M(α) equals the ith symbol of α, then we say
that M masters α.

We consider three classes of infinite words. The first are the purely periodic
words, those of the form xxx · · · for some string x. Next are the ultimately pe-
riodic words, those of the form xyyy · · · for strings x, y. Finally we consider the
multilinear words [22], which consist of an initial string followed by strings that
repeat in a way governed by linear polynomials, for example abaabaaab · · · .

All of the automata we consider are deterministic automata with a one-way
input tape. We first examine DFAs (deterministic finite automata), showing
that no DFA predictor masters every purely periodic word. We then consider
DPDAs (deterministic pushdown automata), showing that no DPDA predictor

Prediction of Infinite Words with Automata 3

∃ masters−−−−−−−−−−−−→ ∀ purely periodic ultimately periodic multilinear
DFA × × ×
DPDA × × ×
DSA X ? ?
multi-DFA X X ?
sensing multi-DFA X X X

Table 1: Prediction of classes of infinite words. A checkmark means that there
is a predictor in that row which masters every infinite word in that column.
A cross means that this is not the case.

masters every purely periodic word. We next turn to DSAs (deterministic stack
automata). Stack automata are a generalization of pushdown automata whose
stack head, in addition to pushing and popping when at the top of the stack,
can move up and down the stack in read-only mode [10]. We show that there
is a DSA predictor which masters every purely periodic word, and we provide
an algorithm by which it can do so.

Next, we consider multi-DFAs (multihead deterministic finite automata),
finite automata with one or more input heads [13]. We show that there is
a multi-DFA predictor which masters every ultimately periodic word, and
we provide an algorithm by which it can do so. Finally, we consider sensing
multi-DFAs, multihead DFAs extended with the ability to sense, for each pair
of heads, whether those two heads are at the same position on the input
tape [14]. We show that there is a sensing multi-DFA predictor which masters
every multilinear word, and we provide an algorithm by which it can do so.
Our results are depicted in Table 1.

1.2 Related work

A classic survey of inductive inference, including the problem of sequence pre-
diction, can be found in [2]. The concept of “mastering” an infinite word is
a form of “learning in the limit”, a concept which originates with the sem-
inal paper of Gold [11], where it is applied to language learnability. Turing
machines are considered as sequence extrapolators in [4]. An early work on
prediction of periodic sequences is [21], where these sequences appear in the
setting of two-player emission-prediction games. Inference of ultimately peri-
odic sequences is treated in [15] in an “offline” setting, where the input is a
finite string and the output is a description of an ultimately periodic sequence.
An algorithm is presented which computes the shortest possible description
of an ultimately periodic sequence when given a long enough prefix of that
sequence, and can be implemented in time and space linear in the size of the
input, using techniques from string matching. The algorithm works by finding
the LRS (longest repeated suffix) of the input and predicting the symbol which
followed that suffix on its previous occurrence.

4 Tim Smith

In [19], finite-state automata are considered as predicting machines and the
question of which sequences appear “random” to these machines is answered. A
binary sequence is said to appear random to a predicting machine if no more
than half of the predictions made of the sequence’s terms by that machine
are correct. Further work on this concept appears in [5]. In [9] the finite-
state predictability of an infinite sequence is defined as the minimum fraction
of prediction errors that can be made by a finite-state predictor, and it is
proved that finite-state predictability can be obtained by an efficient prediction
procedure using techniques from data compression. In [3] a random prediction
method for binary sequences is given which ensures that the proportion of
correct predictions approaches the frequency of the more common symbol (0
or 1) in the sequence.

In [18], sequential decision makers with a finite number of possible actions,
called “learning automata”, are studied in the context of a feedback loop
with a random environment. In [16], “inverse problems” for D0L systems are
discussed (in the title and throughout the paper, the term “finite automata”
refers to morphisms). These problems ask, given a word, to find a morphism
and initial string which generate that word (bounds are assumed on the size of
the morphism and initial string). An approach is given for solving this problem
by trying different string lengths for the righthand side of the morphism until a
combination is found which is compatible with the input. A genetic algorithm is
described to search the space of word lengths. In [6], an evolutionary algorithm
is used to search for the finite-state machine with the highest prediction ratio
for a given purely periodic word, in the space of all automata with a fixed
number of states. In [7], the problem of successfully predicting a single 0 in an
infinite binary word being revealed sequentially to the predictor is considered;
only one prediction may be made, but at a time of the predictor’s choosing.
Learning of languages consisting of infinite words has also been studied; see
[1] for recent work.

An early and influential approach to predicting infinite sequences is that
of program-size complexity [24]. Unfortunately this model is incomputable,
and in [17] it is shown furthermore that some sequences can only be predicted
by very complex predictors which cannot be discovered mathematically due
to problems of Gödel incompleteness. [17] concludes that “perhaps the only
reasonable solution would be to add additional restrictions to both the algo-
rithms which generate the sequences to be predicted, and to the predictors.”
This suggestion is akin to the approach followed in the present paper, where
the automata and infinite words considered are of various restricted classes.
Following on from [17], in [12] the formalism of sequence prediction is extended
to a competition between two agents, which is shown to be a computational
resources arms race.

Prediction of Infinite Words with Automata 5

1.3 Outline of paper

The rest of the paper is organized as follows. Section 2 gives definitions for
infinite words and predicting automata. Section 3 studies prediction of purely
periodic and ultimately periodic words. Section 4 studies prediction of multi-
linear words. Section 5 gives our conclusions.

2 Preliminaries

2.1 Words

Where X is a set, we denote the cardinality of X by |X|. For a list or tuple
v, v[i] denotes the ith element of v; indexing starts at 1. An alphabet A is
a finite set of symbols. A word is a concatenation of symbols from A. We
denote the set of finite words by A∗ and the set of infinite words by Aω. We
call finite words strings and infinite words streams or ω-words. The length
of x is denoted by |x|. We denote the empty string by λ. A language is a
subset of A∗. A (symbolic) sequence S is an element of A∗ ∪ Aω. A prefix
of S is a string x such that S = xS′ for some sequence S′. The ith symbol
of S is denoted by S[i]; indexing starts at 1. For a non-empty string x, xω

denotes the infinite word xxx · · · . Such a word is called purely periodic. An
infinite word of the form xyω, where x and y are strings and y 6= λ, is called
ultimately periodic. An infinite word is multilinear if it has the form

q
∏
n≥0

ra1n+b11 ra2n+b22 · · · ramn+bmm ,

where
∏

denotes concatenation, q is a string, m is a positive integer, and
for each 1 ≤ i ≤ m, ri is a non-empty string and ai and bi are nonnegative
integers such that ai + bi > 0. For example,

∏
n≥0

an+1b = abaabaaab · · · is a

multilinear word. The class of multilinear words appears in [22] and also in
[8] (as the reducts of the “prime” stream Π). Clearly the multilinear words
properly include the ultimately periodic words. Any multilinear word which is
not ultimately periodic we call properly multilinear.

2.2 Predictors

We now define predictors based on various types of automata. (See [25] for
results on the original automata, which are language recognizers rather than
predictors.) Each predictor M takes as input an infinite word α and produces
as output an infinite word M(α), with the restriction that for each i ≥ 1, M
must output the ith symbol of M(α) before it can read beyond the i − 1th
symbol of α. We call M(α)[i] M ’s guess about position i of α. If M(α)[i] = α[i]
then we say that the guess is correct; otherwise we say that it is incorrect. If

6 Tim Smith

there is an n ≥ 1 such that for every i ≥ n, M(α)[i] = α[i], then we say that
M masters α. (If M outputs only a finite number of symbols when given α,
then we say that M(α) is undefined and M does not master α.)

2.2.1 DFA predictors

A DFA predictor is a tuple M = (Q,A, T, ., qs), where Q is the set of states,
A is the input alphabet, . is the start-of-input marker, qs ∈ Q is the initial
state, and T is a transition function of the form [Q× (A ∪ {.})]→ [Q×A].

To perform a computation, M is given an input consisting of the symbol
. followed by an infinite word α. M starts in state qs with its input head
positioned at .. M then makes transitions based on its current state and
input symbol. At each transition, M changes state, moves its head to the
right, and makes a guess about what the next symbol will be. The sequence of
these guesses constitutes M(α). More formally, let C = [C1, C2, C3, . . .] where
Ci = {[qi, ci, gi] with qi ∈ Q, ci ∈ (A ∪ {.}), gi ∈ A such that q1 = qs and for
each i ≥ 1, ci = (.α)[i] and T (qi, ci) = [qi+1, gi]. Notice that there is only one
possible C, given M and α. Now for i ≥ 1, set M(α)[i] = gi.

2.2.2 DPDA predictors

A DPDA predictor is a tuple M = (Q,A, F, T, .,M, qs), where Q is the set of
states, A is the input alphabet, F is the stack alphabet, . is the start-of-input
marker, M is the bottom-of-stack marker, qs ∈ Q is the initial state, and T is
a transition function of the form

[Q× (A ∪ {.})× (F ∪ {M})]→ [Q× (A ∪ {stay})× (F ∪ {pop, keep})].

To perform a computation, M is given an input consisting of the symbol
. followed by an infinite word α. M starts in state qs with stack M and with
its input head positioned at .. M then makes transitions based on its current
state, input symbol, and stack symbol. At each transition, M (1) changes
state, (2) either moves its input head to the right and guesses what the next
symbol will be, or else keeps it in place (using stay), and (3) either pushes a
symbol to the stack, pops the stack, or leaves it alone (using keep). It is illegal
for M to pop M. The sequence of guesses made by M constitutes M(α).

2.2.3 DSA predictors

A DSA predictor is a tuple M = (Q,A, F, T, .,M, qs), where Q is the set of
states, A is the input alphabet, F is the stack alphabet, . is the start-of-input
marker, M is the bottom-of-stack marker, qs ∈ Q is the initial state, and T is
a transition function of the form

[Q× (A ∪ {.})× (F ∪ {M})× {top, inside}]→
[Q× (A ∪ {stay})× (F ∪ {pop, keep, up, down})].

Prediction of Infinite Words with Automata 7

To perform a computation, M is given an input consisting of the symbol
. followed by an infinite word α. M starts in state qs with stack M and with
its input head positioned at .. M then makes transitions based on its current
state, input symbol, stack symbol, and whether or not the stack head is at the
top of the stack (top means the stack head is at the top; inside means it is not).
At each transition, M (1) changes state, (2) either moves its input head to the
right and guesses what the next symbol will be, or else keeps it in place (using
stay), and (3) either pushes a symbol to the stack, pops the stack, leaves it
alone (using keep), or moves its stack head up or down. It is illegal for M to
push or pop the stack when the stack head is not at the top of the stack, or
to move it up when it is already at the top or down when it is already at the
bottom. The sequence of guesses made by M constitutes M(α).

2.2.4 Multi-DFA predictors

A multi-DFA predictor is a tuple of the form M = (Q,A, k, T, ., qs), where
Q is the set of states, A is the input alphabet, k ≥ 1 is the number of input
heads, . is the start-of-input marker, qs ∈ Q is the initial state, and T is a
transition function of the form

[Q× (A ∪ {.})k]→ [Q× {stay, right}k ×A].

To perform a computation, M is given an input consisting of the symbol
. followed by an infinite word α. M starts in state qs with its k input heads
all positioned at .. M then makes transitions based on its current state and
the input symbols it sees under each of its heads. At each transition, M (1)
changes state, (2) for each head either moves it to the right or keeps it in
place (using stay), and (3) makes a guess about what the next symbol will be.
If in a given transition, M does not reach a new input position (one which
had not previously been reached by any head), M ’s guess at that transition is
disregarded (i.e., it is not included in M(α)). That is, M(α)[i] is the guess of
the first transition which moves any head to α[i].

A sensing multi-DFA predictor is a multi-DFA predictor extended so
that its transition function takes an additional argument indicating, for each
pair of heads, whether those two heads are at the same input position.

3 Prediction of periodic words

In this section we study finite automata, pushdown automata, stack automata,
and multihead finite automata as predictors of purely periodic and ultimately
periodic words.

3.1 Prediction by DFAs

Theorem 1 Let A be an alphabet such that |A| ≥ 2. Then no DFA predictor
masters every purely periodic word over A.

8 Tim Smith

Proof Suppose some DFA predictor M masters every purely periodic word
over A. M has some number of states p. Take any a, b ∈ A such that a 6= b.
Let α be the purely periodic word (ap+1b)ω. Then there is an n ≥ 1 such that
for every i ≥ n, M(α)[i] = α[i]. Take the first segment of p+ 1 consecutive as
after the position n. At two of these as, M is in the same state. Then M will
repeat the guesses it made between those two as for as long as it keeps reading
as. But then M will guess a for the next b, a contradiction. So M does not
master α. ut

3.2 Prediction by DPDAs

Theorem 2 Let A be an alphabet such that |A| ≥ 2. Then no DPDA predictor
masters every purely periodic word over A.

Proof (Idea) To aid the reader’s understanding, we first give a sketch, fol-
lowed below by the full proof. Suppose that some DPDA predictor M =
(Q,A, F, T, .,M, qs) masters every purely periodic word over A. We set p to be
very large with respect to |Q| and |F |. Take any a, b ∈ A such that a 6= b. Let
α be the purely periodic word (apb)ω. Then there is some position m ≥ 0 after
which all of M ’s guesses about α are correct. Now, between each two segments
of p consecutive a’s, there is only one symbol (a single b), so the stack can grow
by at most |Q|·|F | between each two segments. It follows that in some segment
of p consecutive a’s occurring after m, the stack height does not decrease by
more than |Q| · |F |, since otherwise it would eventually become negative. We
show that in such a segment, because p is so large with respect to |Q| and
|F |, there are two configurations Ci and Cj of M occurring at different input
positions with the same state and stack symbol, such that the stack below the
top symbol at Ci is not accessed between Ci and Cj . Then since all of M ’s
guesses between Ci and Cj are a’s, M will continue to guess a’s for as long as
it continues to read a’s. But then M will guess a for the b at the end of the
segment, contradicting the supposition that all of M ’s guesses about α after
m are correct. Therefore M does not master every purely periodic word over
A. ut

We now give a full proof of the theorem, starting with a lemma.

Lemma 1 Take any integer n ≥ 1 and let L = m1, . . . ,mn be a list of integers
such that for all 1 ≤ i < n, |mi − mi+1| ≤ 1. Let d = mn − m1. Take any
integer k ≥ 1. Suppose n ≥ (2k − d)k2k−d. Then there are integers 1 ≤ p1 <
· · · < pk ≤ n such that for each pi, for all j such that pi ≤ j ≤ pk, mj ≥ mpi .

Proof Suppose there are 1 ≤ a < b ≤ n such that mb −ma ≥ k − 1. Then for
1 ≤ i ≤ k, set pi to the highest j such that j ≤ b and mj = ma + i− 1. Then
we are done.

So say there are no such a, b. Then we have d < k and mn−k < mi < m1+k
for all mi. Then there are at most (m1 + k) − (mn − k) = 2k − d distinct

Prediction of Infinite Words with Automata 9

values in L. Then some value appears in L at least n
2k−d ≥ k2k−d times.

For any integer j, let |L|j be the number of occurrences of j in L. Take the
lowest mn − k < j < m1 + k such that |L|j ≥ kj+k−mn . If j = mn − k + 1
then j is the lowest value in L and appears at least k times, so choose pi
from those appearances and we are done. Otherwise, |L|j−1 < kj−1+k−mn , so
|L|j ≥ k|L|j−1. Then there are k appearances of j in L uninterrupted by j−1,
so choose pi from those appearances and we are done. ut

Now we can complete the proof of Theorem 2.

Theorem 2 Let A be an alphabet such that |A| ≥ 2. Then no DPDA predictor
masters every purely periodic word over A.

Proof Let M = (Q,A, F, T, .,M, qs) be a DPDA predictor. Suppose M masters
every purely periodic word over A. Let k = |Q| · |F | + 1 and let p = (3k)k3k.
Take any a, b ∈ A such that a 6= b. Let α be the purely periodic word (apb)ω.
Then there is some position m ≥ 0 after which all of M ’s guesses about α are
correct.

Now, if the stack height increased by more than |Q| · |F | at one input
position, there would be two configurations C1 and C2 of M at that position
with the same state and stack symbol, with C1 occurring prior to C2, such
that the stack below the top symbol at C1 is not accessed between C1 and
C2. Then M would loop and never reach the next input position. So the most
that the stack height can increase at one position is |Q| · |F |.

Let the stack difference of a segment of p consecutive a’s be the height
of the stack at the end of the segment minus the height of the stack at the
beginning of the segment. Because there is only one symbol between each two
segments (a single b), the stack height can increase by at most |Q| · |F | between
segments. Then there must be a segment of p consecutive a’s starting after
position m with a stack difference of at least −|Q| · |F |, since otherwise the
stack height after m would eventually become negative.

So take any segment of p consecutive a’s starting after m with a stack
difference d ≥ −|Q| · |F |. Let C1, . . . , Cn be the successive configurations of M
during this segment, where each configuration Ci has the form (qi, si), with
qi being the current state and si the current stack. We have k ≥ −d and
n ≥ p. Hence n ≥ (3k)k3k ≥ (2k − d)k2k−d. Then by Lemma 1 there is a
list P of integers 1 ≤ p1 < · · · < pk ≤ n such that for each pi, for all j such
that pi ≤ j ≤ pk, |sj | ≥ |spi |. So since k > |Q| · |F |, two of the P -indexed
configurations Ci and Cj have the same state and stack symbol, with i < j. If
Ci and Cj occurred at the same input position, then since the stack below the
top symbol at Ci is not accessed between Ci and Cj , M would loop and never
reach the next input position. So Ci and Cj occur at distinct input positions
i1 < i2 within the segment of p consecutive a’s.

Now, all of the input symbols from i1 to i2 are a’s. Therefore as long as M
continues to read a’s it will repeat the computation between i1 and i2, since
the stack below the top symbol at i1 is not accessed between i1 and i2. So
since all of M ’s guesses from i1 to i2 are a’s, M will continue to guess a’s for

10 Tim Smith

as long as it continues to read a’s. But then M will guess a for the b at the end
of the segment, contradicting the supposition that all of M ’s guesses about α
after m are correct. Therefore M does not master every purely periodic word
over A. ut

3.3 Prediction by DSAs

We give two results about the predictive capabilities of DSAs: first, that some
DSA predictor masters every purely periodic word, and second, that no DSA
predictor can master any infinite word which is not multilinear.

Algorithm 1 A DSA predictor which masters every purely periodic word.
The input head is denoted by hi and the stack head is denoted by hs. The
input consists of the symbol . followed by an infinite word α. Wherever a guess
is not specified, it may be taken to be arbitrary.

1: loop
2: move hi
3: push α[hi]
4: recovering ← false
5: loop
6: move hs down until stack[hs] = M
7: matched← true
8: loop
9: move hs up

10: move hi, guessing stack[hs]
11: matched← false if α[hi] 6= stack[hs]
12: break if top

13: recovering ← true if not matched
14: break if recovering and matched

Theorem 3 Let A be an alphabet. Then some DSA predictor masters every
purely periodic word over A.

Proof Let M be a DSA predictor which implements Algorithm 1. (The boolean
variables recovering and matched can be accommodated using M ’s finite state
control.) The idea is that M will gradually build up its stack until the stack
consists of the period (or a cyclic shift thereof) of the purely periodic word to
be mastered. Following Algorithm 1, M begins by pushing the first symbol of
the input after . onto its stack, and then enters the loop spanning lines 5–14.
This loop moves the stack head to the bottom of the stack and then moves it
up symbol by symbol, predicting that the input will match the stack. Call each
iteration of the loop spanning lines 5–14 a “pass”, and call a pass successful if
matched is true at line 14 and unsuccessful otherwise. Observe that if a pass
is successful, then all of the guesses made during it (on line 10) are correct,
and that if eventually there are no more unsuccessful passes, then M masters
its input.

Prediction of Infinite Words with Automata 11

Now take any purely periodic word α = xω. To show that M masters α,
we first show that every unsuccessful pass will eventually be followed by a
successful pass. Observe that there must be at least one successful pass, since
M begins the passes with only one symbol on the stack, and that symbol
will eventually reappear in the input. So take any unsuccessful pass after the
first successful pass. Now take the most recent successful pass prior to that
unsuccessful pass. Let i be the position of the input head in x (counting from
zero, so 0 ≤ i < |x|) at the beginning of this most recent successful pass and
let h be the height of the stack. Then the position of the input head in x after
the successful pass is (i + h) mod |x|. Then after |x| − 1 unsuccessful passes,
the position of the input head in x will be (i+ h|x|) mod |x| = i. So the next
pass after that will be successful. Hence every unsuccessful pass will eventually
be followed by a successful pass.

Since each unsuccessful pass sets recovering to true, the next successful
pass after it will break at line 14, causing M to push another symbol onto the
stack. If the height of the stack never reaches |x|, then after some point, every
pass is successful and M masters α. So say the height of the stack eventually
reaches |x|. Then since the last pass before the stack reached that height was
successful, and the input symbol following that pass is now at the top of
the stack, the previous |x| symbols of the input match the stack. Then every
subsequent pass will be successful, and M masters α. ut

Theorem 4 Every infinite word mastered by a DSA predictor is multilinear.

Proof Let M be a DSA predictor and let α be any infinite word mastered
by M . We will show that there is a DSA recognizer for Prefix(α), the set of
all prefixes of α. Since M masters α, there is an n ≥ 1 such that for every
i ≥ n, M(α)[i] = α[i]. Take any such n. Let C = (q, s, i) be the configuration
of M upon reaching position n of α, where q is the state of M , s is the stack,
and i is the position of the stack head within s. Let Mα be a DSA recognizer
which operates as follows. First Mα uses its finite control to check that the
first n symbols of its input match the first n symbols of α. Then Mα uses its
finite control to push s onto its stack and move its stack head to position i
within s. Next Mα simulates M , starting from C. Whenever M would make
a guess, Mα instead checks that the next symbol of the input matches M ’s
guess. If any check fails, then Mα rejects its input; otherwise, when Mα reaches
end-of-input, it accepts. Since all of M ’s guesses after n are correct, Mα now
recognizes Prefix(α), and hence Mα determines α in the sense of [22]. Then
by Theorem 8 of [22], α is multilinear. ut

3.4 Prediction by multi-DFAs

We next consider multi-DFA predictors. We leave their more powerful cousins,
sensing multi-DFA predictors, to Section 4.

Theorem 5 Let A be an alphabet. Then some multi-DFA predictor masters
every ultimately periodic word over A.

12 Tim Smith

Algorithm 2 A 2-head DFA predictor which masters every ultimately peri-
odic word. The heads are denoted by t and h. The input consists of the symbol
. followed by an infinite word α. Wherever a guess is not specified, it may be
taken to be arbitrary.

move h
loop

move t
move h, guessing α[t]
move h if α[h] 6= α[t]

Proof We employ a variation of the “tortoise and hare” cycle detection algo-
rithm [20], adapted to our setting. Let M be a 2-head DFA predictor which
implements Algorithm 2. Take any ultimately periodic word α = xyω. Follow-
ing the algorithm, the two heads t (for “tortoise”) and h (for “hare”) begin
at the start of the input. M moves h one square to the right (making an ar-
bitrary guess) and then enters the loop. In the loop, M guesses that h will
match t. After each missed guess, h moves ahead an extra square (making an
arbitrary guess), so the distance between the two heads increases by 1. If this
distance stops growing, then there are no more missed guesses, so M masters
α. Otherwise, both heads will reach the periodic part yω of α and the distance
between them will reach a multiple of |y|. Then each head will point to the
same position in y as the other, so all guesses will be correct from that point
on. So again M masters α. ut

4 Prediction of multilinear words

We turn now to prediction of the class of multilinear words. We give an algo-
rithm by which a sensing multi-DFA can master every multilinear word.

Theorem 6 Let A be an alphabet. Then some sensing multi-DFA predictor
masters every multilinear word over A.

Proof (Idea) To aid the reader’s understanding, we first give a sketch, fol-
lowed below by the full proof. Let M be a sensing 10-head DFA predictor
which implements Algorithm 3. The idea of the algorithm is as follows. Any

properly multilinear word α can be written as q
∏
n≥1

m∏
i≥1

pis
n
i for some m ≥ 1

and strings q, pi, si subject to certain conditions. That is, α can be broken into
“blocks”, each block consisting of m “segments” of the form pis

n
i . To master

α, M will alternate between two procedures, Correction and Matching.
Correction attempts to position h1, h2, h3, and h4 so that each head is
at the beginning of a segment, h2 is ahead of h1 by a given number of seg-
ments, h3 is ahead of h2 by the same number of segments, and h4 is ahead
of h3 by the same number of segments. Each time Correction is entered,
the given number of segments used to separate the heads is increased by one.

Prediction of Infinite Words with Automata 13

Matching attempts to master α on the assumption that Correction has
successfully positioned h1, h2, h3, and h4 at the beginning of segments and
that the number of segments separating the heads is a multiple of m (meaning
that the segments share the same pi and si). (See the proof of Lemma 6 for
a visual depiction of this process.) If any problem is detected, Matching is
exited and Correction is entered again.

The number of segments used to separate the heads is given by r − l.
Before each call to Correction, r is moved forward, increasing this number
by one. Correction works by first moving h1 forward to h4 and then calling
AdvanceOne(1), which tries to move h1 to the beginning of the next segment.
Then Correction moves h2 to h1 and calls AdvanceMany(2), which tries
to move h2 forward by r− l segments. Correction then moves h3 to h2 and
calls AdvanceMany(3), which tries to move h3 forward by r − l segments.
Finally, Correction moves h4 to h3 and calls AdvanceMany(4), which
tries to move h4 forward by r− l segments. If everything worked as intended,
the four heads are now at the beginning of segments and each pair of heads
hi and hi+1 are separated by the same number of segments, r − l.

Matching works by using h1, h2, and h3 to predict h4. If the four heads
are separated by the same number of segments, and if this number is a multiple
of m, then the heads share the same pi and si. In this case, the later heads
have extra copies of si: for some d ≥ 1, in each segment i, h4 will see d more
copies of si than h3, which will see d more than h2, which will see d more than
h1. Matching moves the heads together, using the earlier heads to predict
h4 and detecting when each head passes its last copy of si by comparing the
heads with each other. By use of a normal form for properly multilinear words,
we guarantee that the first symbol of pi+1 differs from the first symbol of si,
ensuring that the next segment can be detected. The supplemental head h3a is
used to predict h4’s last d copies of si by using h3’s last d copies a second time.
Once all heads are at the beginning of the next segment, Matching repeats
from the start. If any guess is incorrect, then the heads were not separated
by a multiple of m segments when Matching was entered. Upon making
an incorrect guess, Matching exits, r − l is increased, and Correction is
entered again.

The fact that M is sensing allows it to perform operations a designated
number of times, a technique used in the procedures AdvanceMany and
AdvanceOne called by Correction. This technique works in the following
way. Let n be the distance between the heads l and r at a given point in the
computation. To perform an operation n times, we first move another head, say
inner, to r. Then we move l and r together until l reaches inner, performing
the operation after each step. Now the operation has been performed n times,
and we can repeat this process to perform it another n times. Further, by
increasing the distance between l and r, we can increase n. It is also possible
to nest this process, by moving another head, say outer, to r, keeping outer’s
position constant relative to l and r during the inner process, and moving l and
r, but not outer, each time the inner process is completed. When l reaches
outer, the inner process has been executed n times, each time performing

14 Tim Smith

its operation n times. In AdvanceMany and AdvanceOne, this technique
is used to advance a given hi by n segments, using within each segment a
threshold based on n to detect the beginning of the next segment.

Algorithm 3 A sensing 10-head DFA predictor which masters every mul-
tilinear word. The heads are denoted by h1, h2, h3a, h3, h4, t, l, r, inner,
and outer. The input consists of the symbol . followed by an infinite word α.
Wherever a guess is not specified, it may be taken to be arbitrary.

loop
move r
Correction
Matching

procedure Matching
loop

move h3a until h3a = h3

while α[h1] = α[h2] = α[h3] = α[h4] do
move h1, h2, h3a, h3
move h4, guessing α[h2]

break unless α[h2] = α[h4]

while α[h2] = α[h3] = α[h4] do
move h2, h3
move h4, guessing α[h3]

break unless α[h3] = α[h4]

while α[h3a] = α[h3] = α[h4] do
move h3a, h3
move h4, guessing α[h3a]

break unless α[h3a] = α[h4]

while h3a 6= h3 and α[h3a] = α[h4] do
move h3a
move h4, guessing α[h3a]

break unless α[h3a] = α[h4]

procedure Correction
move h1 until h1 = h4
AdvanceOne(1)

move h2 until h2 = h1
AdvanceMany(2)

move h3 until h3 = h2
AdvanceMany(3)

move h4 until h4 = h3
AdvanceMany(4)

procedure AdvanceMany(i)
move outer until outer = r
while l 6= outer do

AdvanceOne(i)
move l, r

procedure AdvanceOne(i)
move t until t = hi
move hi
move inner until inner = r
while l 6= inner do

if α[t] = α[hi] then
move l, r, outer

else
move inner until inner = r
move hi

move t
move hi

while α[t] = α[hi] do
move t
move hi, guessing α[t]

To show that M masters every multilinear word α, we first show that if
either Matching or Correction gets “stuck”, i.e. is entered and does not
end, then in its stuck state it will continue to make guesses, all of which are
correct, and so M masters α. In particular, we show that the first while loop of
AdvanceOne will always end. This loop implements the “tortoise and hare”
routine of Algorithm 2 on α, waiting for a streak of r− l consecutive matches.
Such a streak will eventually be obtained, because if α is ultimately periodic,
then by the proof of Theorem 5, the “tortoise and hare” algorithm masters

Prediction of Infinite Words with Automata 15

α, and if α is properly multilinear, then we show that the “tortoise and hare”
algorithm will eventually achieve k consecutive matches on α for any k ≥ 1,
and so the loop will end.

So we are left with the case in which Matching and Correction always
end. Since r is moved at the beginning of each iteration of the main loop, and
since Correction and Matching leave r−l unchanged, r−l will grow. If α is
ultimately periodic, then eventually r−l will be large enough for AdvanceOne
to “line up” the head hi and the head t with respect to the periodic part of
α, so that M masters α. If α is properly multilinear, then eventually r − l
will be large enough for AdvanceOne to always advance hi by at least one
segment. We show further that r − l will grow slowly enough with respect
to the segment length that eventually whenever hi is at the beginning of a
segment, AdvanceOne will move it to the beginning of the next segment
and not farther. As a result, eventually Correction will always end with the
four heads h1, h2, h3, and h4 at the beginning of segments, with the heads
separated by r − l segments as desired. When r − l next reaches a multiple
of m, the segments of the four heads will share the same pi and si. We show
that then Matching can make use of h1, h2, and h3 to correctly predict h4
as intended. Thus M masters α. ut

To obtain a full proof of the theorem, we proceed in several steps. We
begin in Section 4.1 by providing a normal form for properly multilinear words,
together with some definitions to be used in the proofs. Then in Section 4.2 we
prove a result about the behavior of Algorithm 2 (“tortoise and hare”) when
applied to multilinear words. With this groundwork laid, we show in Section
4.3 that by implementing Algorithm 3, a sensing multi-DFA can master every
multilinear word, proving Theorem 6.

4.1 Normal form for properly multilinear words

In the theorem below we give a convenient form for properly multilinear words,
resembling Proposition 32 of [8], but with a tighter constraint.

Theorem 7 Let α be a properly multilinear word. Then α can be written as

q
∏
n≥1

m∏
i≥1

pis
n
i

for some m ≥ 1, string q, and strings pi and si such that

– for every i from 1 to m, pi 6= λ and si 6= λ,
– for every i from 1 to m− 1, si[1] 6= pi+1[1], and
– sm[1] 6= p1[1].

Proof By Theorem 15 of [22], α can be written as

q
∏
n≥0

ra1n+b11 ra2n+b22 · · · ramn+bmm

16 Tim Smith

for some m ≥ 1, string q, non-empty strings ri, and nonnegative integers ai,
bi where ai + bi > 0, such that

– for every i from 1 to m, bi ≥ 1,
– for every i from 1 to m− 1, ri[1] 6= ri+1[1], and
– if m ≥ 2, r1[1] 6= rm[1].

We transform this form into the desired one in five steps. Following [22], we
view each rain+bii as a triple [ri, ai, bi]. First, rotate the terms as described in
Section 5 of [22] until am is greater than 0. Second, split every triple [r, a, b]
such that a > 0 into two triples [rb, 0, 1] and [ra, 1, 0] (in that order). Third,
replace every triple [r, 0, b] with [rb, 0, 1]. Fourth, merge all adjacent triples
[r, 0, 1],[t, 0, 1] into [rt, 0, 1] repeatedly until there are no more such adjacent
triples. Fifth, from left to right, for each triple [r, 0, 1], append r to q (this is to
change the bound n ≥ 0 into n ≥ 1). It is readily verified that the resulting list
of triples consists of pairs [p, 0, 1],[s, 1, 0] subject to the desired constraints. ut

Example 1 Let α be the properly multilinear word
∏
n≥0

an+1b = abaabaaab · · · .

This already fits the form of Theorem 15 of [22], with q = λ and triples [a, 1, 1],
[b, 0, 1]. Following the proof above, we rotate the terms as described in Section
5 of [22] until am > 0, obtaining q = a and triples [b, 0, 1], [a, 1, 2]. Next,
we split the triple [a, 1, 2], resulting in q = a and triples [b, 0, 1], [aa, 0, 1],
[a, 1, 0]. Then we merge triples, obtaining q = a and triples [baa, 0, 1], [a, 1, 0].
Finally, we append baa to q, leaving us with q = abaa and triples [baa, 0, 1],
[a, 1, 0]. Thus we can write α as abaa

∏
n≥1

(baa)an, which meets the conditions

of Theorem 7.

4.1.1 Definitions for properly multilinear words

We now have that any properly multilinear word can be written as

q
∏
n≥1

m∏
i=1

pis
n
i

subject to the conditions of Theorem 7. In the context of a properly multilinear
word α written subject to those conditions, we make the following definitions.
Strings pi and si are already defined for 1 ≤ i ≤ m. Let ρ = max{|pi| |
1 ≤ i ≤ m}. Let σ = max{|si| | 1 ≤ i ≤ m}. For each n > m, let pn =
p((n−1) mod m)+1 and sn = s((n−1) mod m)+1. For each n ≥ 1, let blockn =
m∏
i=1

pis
n
i and segn = pns

d n
m e
n . We have α = q

∏
n≥1

blockn = q
∏
n≥1

segn. For j, k ≥

1, we say that position j of α occurs in block k of α, and write block(j) = k,

iff |q
k−1∏
n=1

blockn| < j ≤ |q
k∏

n=1
blockn|. (For j ≤ |q|, we say that position j

does not occur in any block, and block(j) is undefined.) For j, k ≥ 1, we say
that position j of α occurs in segment k of α, and write seg(j) = k, iff

Prediction of Infinite Words with Automata 17

|q
k−1∏
n=1

segn| < j ≤ |q
k∏

n=1
segn|. (For j ≤ |q|, we say that position j does not

occur in any segment, and seg(j) is undefined.) Notice that for all i > |q|,
block(i) = d seg(i)m e.

4.2 “Tortoise and hare” applied to multilinear words

In this subsection we show that if a multi-DFA predictor M implements Al-
gorithm 2 (“tortoise and hare”) on a multilinear word, then for every k ≥ 1,
M will at some point make k consecutive correct guesses. We will make use of
this result in the next subsection in proving that there is a sensing multi-DFA
predictor which masters every multilinear word. We start with some lemmas.

Lemma 2 Let M be a multi-DFA predictor implementing Algorithm 2 on a
properly multilinear word α. Write α in the form of Theorem 7. Let b = 2ρ+σ2.
Suppose that while h is in a segment jh and t is in a segment jt such that jh
mod m = jt mod m, h moves b symbols. Then h and t will agree afterward
until h leaves jh or t leaves jt, and if one leaves before the other, then at that
point they will disagree.

Proof Consider the point at which h begins to move the b symbols. Since jh

mod m = jt mod m, for some 1 ≤ j ≤ m, segment jh has the form pjs
block(h)
j

and segment jt has the form pjs
block(t)
j . After h moves 2|pj | symbols, both

heads are past pj , so each head is inside some occurrence of sj . Let 1 ≤ dt ≤ |sj |
be the position of t within its occurrence of sj and let 1 ≤ dh ≤ |sj | be
the position of h within its occurrence of sj . Let d = (dt − dh) mod |sj |; d
indicates how many times dh must be incremented with respect to dt before
dh mod |sj | = dt mod |sj |, at which point we say h and t have “lined up”
with respect to sj . Since h is moved an extra symbol with respect to t for each
missed guess, if the two heads mismatch d more times, they will be lined up.
So after h moves another |sj |2 symbols (making at most b symbols in total), if
the heads are not lined up, there were less than d mismatches, hence at most
|sj |−2 mismatches. Hence there were at least |sj |2−(|sj |−2) = |sj |(|sj |−1)+2
guesses. Then by the pigeonhole principle, M must have made |sj | consecutive
correct guesses. So the heads are lined up or else M has made |sj | consecutive
correct guesses. Either way, since the same |sj | symbols will keep repeating
under the two heads, h and t will now agree until h leaves jh or t leaves jt .
If one leaves before the other, then at that point they will disagree, since
sj [1] 6= pj+1[1]. ut

Lemma 3 Let M be a multi-DFA predictor implementing Algorithm 2 on a
properly multilinear word α. Write α in the form of Theorem 7. Suppose for
some k ≥ 1, M never gets k consecutive guesses correct. Then for every d,
there is some point after which always seg(h)− seg(t) ≥ d.

18 Tim Smith

Proof Let p =
m∑
i=1

|pi| and s =
m∑
i=1

|si|. For each n ≥ 1, let sumblock1to(n) =

n∑
i=1

|block i|. We have for all n ≥ 1, sumblock1to(n) =
n∑
i=1

|block i| =
n∑
i=1

p+ is =

np+ ns(n+1)
2 . Now, since M never gets k consecutive guesses correct, and since

h moves an extra symbol ahead of t on each missed guess, we have always
h ≥ t+ t

k − 2 = t(1 + 1
k)− 2. Now take any b ≥ 1. Eventually t will pass block

3bk. Consider any point after that. There are n ≥ 3bk and 1 ≤ c ≤ |blockn+1|
such that t is on the cth symbol of block n+1. So t = |q|+sumblock1to(n)+ c
and h ≥ (|q|+ sumblock1to(n) + c)(1 + 1

k)− 2. We have

(1 +
1

k
) sumblock1to(n) = (1 +

1

k
)(np+

ns(n+ 1)

2
)

= (1 +
1

k
)np+ (1 +

1

k
)n(n+ 1)

s

2

= (1 +
1

k
)np+ ((1 +

1

k
)n2 + (1 +

1

k
)n)

s

2

= p(n+
n

k
) + (n2 +

n2

k
+ n+

n

k
)
s

2

≥ p(n+ 3b) + (n2 + 3bn+ n+ 3b)
s

2

> 2bp+ p(n+ b) + (n2 + 2bn+ bn+ n+ b)
s

2

> 1 + p(n+ b) + (n2 + 2bn+ b2 + n+ b)
s

2

= 1 + p(n+ b) + (n+ b)(n+ b+ 1)
s

2
= 1 + sumblock1to(n+ b),

giving us (1 + 1
k) sumblock1to(n) > sumblock1to(n+ b) + 1. Then we have

h ≥ (|q|+ sumblock1to(n) + c)(1 +
1

k
)− 2

= |q|(1 +
1

k
) + (1 +

1

k
) sumblock1to(n) + c(1 +

1

k
)− 2

> |q|(1 +
1

k
) + sumblock1to(n+ b) + 1 + c(1 +

1

k
)− 2

> |q|+ sumblock1to(n+ b),

giving us h > |q| + sumblock1to(n + b). Therefore block(h) ≥ n + b + 1, so
since block(t) = n + 1, we have block(h) − block(t) ≥ b. So for every b, there
is some point after which always block(h) − block(t) ≥ b. So now take any
d. Let b = d−1

m + 1. As shown above, there is some point after which always
block(h)−block(t) ≥ b. From that point onward, from the fact that each block
contains exactly m segments, we have always seg(h)−seg(t) ≥ m(b−1)+1 ≥ d,
which was to be shown. ut

Prediction of Infinite Words with Automata 19

Lemma 4 Let M be a multi-DFA predictor implementing Algorithm 2 on a
properly multilinear word α. Write α in the form of Theorem 7. Suppose for
some k ≥ 1, M never gets k consecutive guesses correct. Then for every n ≥ 1,
there are segments jh, jt ≥ n of α such that jh mod m = jt mod m, t enters
jt before h enters jh, and h leaves jh before t leaves jt.

Proof Take any n ≥ 1. Take any segments jh ′, jt ′ ≥ n such that at some point,
h is in jh ′ and t is in jt ′. Take any d > jh ′ − jt ′ such that d mod m = 0.
By Lemma 3, there is some point after which always seg(h) − seg(t) ≥ d.
So there is a last point at which seg(h) − seg(t) < d. At this point, h is in
some segment jh ′′ and t is in some segment jt such that jh ′′ − jt = d− 1 and
jh ′′, jt ≥ n. If t leaves jt before h leaves jh ′′, then seg(h)− seg(t) would still be
less than d, a contradiction. So h leaves jh ′′ and enters jh ′′ + 1 before t leaves
jt . Now seg(h) − seg(t) = d. Now if t leaves jt before h leaves jh ′′ + 1, then
seg(h)− seg(t) would again be less than d, a contradiction. So h leaves jh ′′+ 1
before t leaves jt . Letting jh = jh ′′+1, we therefore have that t enters jt before
h enters jh, and h leaves jh before t leaves jt . Further, we have jh, jt ≥ n, and
since jh − jt = d and d mod m = 0, jh mod m = jt mod m, completing the
proof. ut

Theorem 8 Let M be a multi-DFA predictor implementing Algorithm 2 on
a multilinear word α. Then for every k ≥ 1, M will at some point make k
consecutive correct guesses.

Proof If α is ultimately periodic, then by the proof of Theorem 5, M masters
α, so the statement holds. So say α is properly multilinear. Write α in the
form of Theorem 7. Suppose for contradiction that for some k ≥ 1, M never
gets k consecutive guesses correct. Let b = 2ρ+ σ2. There is some n ≥ 1 such
that for every n′ ≥ n, |segn′ | ≥ b + k. Then by Lemma 4, there are segments
jh, jt ≥ n such that jh mod m = jt mod m, t enters jt before h enters jh,
and h leaves jh before t leaves jt . So t is in jt for the whole time that h is
in jh. Then by Lemma 2, once h has moved b symbols into jh, h and t will
agree until h reaches the beginning of segment jh + 1. Since |seg jh | ≥ b+k, M
therefore makes k consecutive correct guesses, contradicting the supposition
that M never does so. So for every k ≥ 1, M will at some point make k
consecutive correct guesses. ut

4.3 Prediction of multilinear words by sensing multi-DFAs

We now give a full proof of Theorem 6, filling out the sketch given earlier. We
prove lemmas about the matching and correction procedures, and then prove
the main result. Algorithm 3 calls upon four procedures: Matching, Correc-
tion, AdvanceMany, and AdvanceOne. (The procedure AdvanceOne
takes a parameter i ∈ {1, 2, 3, 4}, and so is really four separate procedures;
likewise for AdvanceMany.) All of the procedures have access to all of the
heads of the predicting automaton. Below we prove lemmas about the behavior

20 Tim Smith

of these procedures when they are entered in certain “ready” configurations.
Let M be a sensing multi-DFA predictor with heads h1, h2, h3, h3a, h4, t,
l, r, inner, and outer, and let α be an infinite word. We say that M is in
a Matching-ready configuration on α if its heads are positioned on α such
that h1 ≤ h2 ≤ h3 ≤ h4 and h3a ≤ h3. For each 1 ≤ i ≤ 4, we say that
M is in an Advance(i)-ready configuration on α if its heads are positioned
on α such that t ≤ hi, l ≤ r, inner ≤ r, and outer ≤ r. We say that M is
in a Correction-ready configuration on α if M is in an Advance(4)-ready
configuration on α and h1 ≤ h2 ≤ h3 ≤ h4.

4.3.1 Matching procedure

We prove two lemmas about the matching procedure Matching.

Lemma 5 Let M be a sensing multi-DFA predictor in a Matching-ready
configuration on an infinite word α. If M enters Matching and Matching
does not end, then M masters α.

Proof Matching consists of an outer loop and four inner loops. If the first
inner loop does not end, then h1, h2, h3, and h4 match, so guessing that h4
matches h2 is correct, and M masters α. If the second loop is entered and
does not end, then h2, h3, and h4 all match, so guessing that h4 matches h3 is
correct, and Mmasters α. If the third loop does not end, then h3a, h3, and h4
all match, so guessing that h4 matches h3a is correct, and M masters α. If the
fourth loop does not end, then h3a and h4 match, so guessing that h4 matches
h3a is correct, and M masters α. So say the four inner loops always end. Now,
each time the body of an inner loop is entered, at least one guess is made,
and if any guess is missed in an inner loop, the outer loop ends immediately
thereafter. So if the outer loop does not end and M does not master α, then at
some point M ceases entering the bodies of the inner loops. After that point,
if the outer loop does not end immediately after skipping the first inner loop,
then h2 and h4 match. Next, the second inner loop is skipped, so h2, h3, and
h4 do not all match, hence h3 is different from h2 and h4. But then the outer
loop ends immediately after the second inner loop. So Matching ends or M
masters α. ut

Lemma 6 Let M be a sensing multi-DFA predictor in a Matching-ready
configuration on a properly multilinear word α. Write α in the form of Theorem
7. Suppose that h1, h2, h3, and h4 are all at the beginning of segments, and for
some d ≥ 1, seg(h2)− seg(h1) = seg(h3)− seg(h2) = seg(h4)− seg(h3) = dm.
Then if M enters Matching, M masters α.

Proof We have that for some i, j ≥ 1, for each k ∈ {1, 2, 3, 4}, hk is at the

beginning of a string of the form pjs
i+d(k−1)
j pj+1. Recall that from Theorem

7, sj [1] 6= pj+1[1]. In Matching, M first moves h3a to the same position as
h3. We depict the positions of the heads below. By h s we mean that head h

Prediction of Infinite Words with Automata 21

is at the first symbol of string s.

· · ·h1 pj s
i
j pj+1 · · ·

· · ·h2 pj s
i
js
d
j pj+1 · · ·

· · ·h3a h3 pj s
i
js
d
js
d
j pj+1 · · ·

· · ·h4 pj s
i
js
d
js
d
js
d
j pj+1 · · ·

Following Matching, M moves the heads until they disagree, which will hap-
pen after |pjsij | symbols, when h1 reaches pj+1. In doing so M guesses h2 for
h4, and since h2 and h4 do not disagree, all of the guesses will be correct.

· · · pj sij h1 pj+1 · · ·
· · · pj sij h2 s

d
j pj+1 · · ·

· · · pj sij h3a h3 s
d
js
d
j pj+1 · · ·

· · · pj sij h4 s
d
js
d
js
d
j pj+1 · · ·

Next, M moves h2, h3, and h4 together until they disagree, which will happen
after |sdj | symbols, when h2 reaches pj+1. In doing so M guesses h3 for h4, and
since h3 and h4 do not disagree, all of the guesses will be correct.

· · · pj sij h1 pj+1 · · ·
· · · pj sijsdj h2 pj+1 · · ·
· · · pj sij h3a s

d
j h3 s

d
j pj+1 · · ·

· · · pj sijsdj h4 s
d
js
d
j pj+1 · · ·

Next, M moves h3a, h3, and h4 together until they disagree, which will happen
after |sdj | symbols, when h3 reaches pj+1. In doing so M guesses h3a for h4,
and since h3a and h4 do not disagree, all of the guesses will be correct.

· · · pj sij h1 pj+1 · · ·
· · · pj sijsdj h2 pj+1 · · ·
· · · pj sijsdj h3a s

d
j h3 pj+1 · · ·

· · · pj sijsdjsdj h4 s
d
j pj+1 · · ·

Finally, M moves h3a and h4 together until h3a reaches h3 or h3a and h4
disagree. (Here M uses its sensing ability to detect coincidence of h3a and h3.)
Since h3a and h4 agree for the next |sdj | symbols, h3a will reach h3.

· · · pj sij h1 pj+1 · · ·
· · · pj sijsdj h2 pj+1 · · ·
· · · pj sijsdjsdj h3a h3 pj+1 · · ·
· · · pj sijsdjsdjsdj h4 pj+1 · · ·

22 Tim Smith

Now all of the heads are at pj+1, and the above process will repeat. Because
no guesses were missed during this process, Matching will run perpetually
without missing another guess, and so M masters α. ut

4.3.2 Correction procedure

The correction procedure consists of Correction and its helper procedures
AdvanceOne and AdvanceMany. We give lemmas for these procedures first
for ultimately periodic words, and then for properly multilinear words.

4.3.3 Lemmas for the correction procedure (ultimately periodic case)

Lemma 7 Let M be a sensing multi-DFA predictor in an Advance(i)-ready
configuration on an ultimately periodic word α for some 1 ≤ i ≤ 4. Write α as
psω for strings p, s. If M enters AdvanceOne(i) and AdvanceOne(i) does
not end, then M masters α. Further, if r− l ≥ |ps| when AdvanceOne(i) is
entered, then M masters α.

Proof When AdvanceOne is entered, it moves t until t reaches hi. At this
point, t and hi are at the beginning of an infinite word β, where α = α[1..t]β.
Clearly the ultimately periodic words are closed under shifts, so β is ultimately
periodic. AdvanceOne then implements the “tortoise and hare” routine of
Algorithm 2 on β, waiting for a streak of r− l consecutive matches of t and hi.
By the proof of Theorem 5, this algorithm masters every ultimately periodic
word, so such a streak will eventually be obtained. Finally, AdvanceOne
moves t and hi together until they mismatch. If this happens, AdvanceOne
ends; if this never happens, then all of the guesses during this loop will be
correct, so M masters α. If r − l ≥ |ps|, the last |s| guesses in the streak of
r− l consecutive correct guesses were made while both heads were past p. The
last |s| symbols of the streak will therefore keep repeating under both heads.
So the two heads will continue to agree, and M masters α. ut

Lemma 8 Let M be a sensing multi-DFA predictor in an Advance(i)-ready
configuration on an ultimately periodic word α for some 1 ≤ i ≤ 4. If M enters
AdvanceMany(i) and AdvanceMany(i) does not end, then M masters α.

Proof AdvanceMany first moves outer until outer = r, and then repeatedly
calls AdvanceOne on hi and moves l and r together. On each call to Ad-
vanceOne, by Lemma 7, AdvanceOne will end, or M masters α. So if M
does not master α, then after r − l iterations of the loop, l will catch up with
outer, and AdvanceMany will end. ut

Lemma 9 Let M be a sensing multi-DFA predictor in a Correction-ready
configuration on an ultimately periodic word α. Write α as psω for strings p, s.
If M enters Correction and Correction does not end, then M masters
α. Further, if r − l ≥ |ps| when Correction is entered, then M masters α.

Prediction of Infinite Words with Automata 23

Proof By Lemmas 7 and 8, each call to AdvanceOne and AdvanceMany
will end, or M masters α. So Correction will end, or M masters α. If
r−l ≥ |ps| when Correction is entered, then r−l ≥ |ps| when AdvanceOne
is entered, so by Lemma 7, M masters α. ut

4.3.4 Lemmas for the correction procedure (properly multilinear case)

Lemma 10 Let M be a sensing multi-DFA predictor in an Advance(i)-ready
configuration on a properly multilinear word α for some 1 ≤ i ≤ 4. If M enters
AdvanceOne(i), AdvanceOne(i) will end, and it will move hi at least once.

Proof When AdvanceOne is entered, it moves t until t reaches hi. At this
point, t and hi are at the beginning of an infinite word β, where α = α[1..t]β.
Clearly the properly multilinear words are closed under shifts, so β is properly
multilinear. AdvanceOne then implements the “tortoise and hare” routine
of Algorithm 2 on β, waiting for a streak of r − l consecutive matches of
t and hi. By Theorem 8, such a streak will eventually be obtained. Finally,
AdvanceOne moves t and hi together until they mismatch, which must even-
tually happen, since β is not ultimately periodic. So AdvanceOne will end,
and clearly it will have moved hi at least once. ut

Lemma 11 Let M be a sensing multi-DFA predictor in an Advance(i)-ready
configuration on a properly multilinear word α for some 1 ≤ i ≤ 4. Write
α in the form of Theorem 7. Suppose ρ + 2σ ≤ r − l. Then if M enters
AdvanceOne(i) with hi in some segment, AdvanceOne(i) will end with hi
in a subsequent segment.

Proof Let h = hi. When AdvanceOne is entered, h is in some segment j, so h
is at the beginning of a string of the form wsnj pj+1, where |w| ≤ max(|pj |, |sj |)
and 0 ≤ n ≤ block(h). Suppose AdvanceOne ends before h reaches pj+1.
Since the required streak is r− l, h and t must each have moved at least r− l
symbols. Then since r − l ≥ |pj |+ 2|sj |, we have n ≥ 2, and h and t are both
in the snj part of segment j, past the first sj . Let c be the position of t within
sj and let d be the position of h within sj . t and h agreed on the last |sj |
symbols, so when t was last at position c within sj , h was at position d within
sj , and t and h agreed on those positions. But then sj [c] = sj [d], so t and h
agree now, a contradiction, since they must disagree for AdvanceOne to end.
Therefore AdvanceOne will not end before h reaches pj+1. But by Lemma
10, AdvanceOne will end. So AdvanceOne will end with h in a subsequent
segment. ut

Lemma 12 Let M be a sensing multi-DFA predictor in an Advance(i)-ready
configuration on a properly multilinear word α for some 1 ≤ i ≤ 4. Write α
in the form of Theorem 7. Suppose that M enters AdvanceOne(i) with hi at
the beginning of some segment j, and that ρ + 2σ ≤ r − l ≤ |segj | − 2ρ − σ2.
Then AdvanceOne(i) will end with hi at the beginning of segment j + 1.

24 Tim Smith

Proof Let h = hi. By Lemma 11, AdvanceOne will not end before h reaches
segment j+1. Now when AdvanceOne is entered, it moves t until t reaches h
and then implements the “tortoise and hare” routine of Algorithm 2, waiting
for a streak of r− l consecutive matches of t and h. Let b = 2ρ+ σ2. Then by
Lemma 2, once h has moved b symbols into segment j, h and t will agree until
h reaches the beginning of segment j + 1, at which point they will disagree.
So since |segj | ≥ b + r − l, h and t will achieve a streak of r − l consecutive
matches while in segment j. Then AdvanceOne will enter the second while
loop and move t and h together until they mismatch, which will happen when
h reaches the beginning of segment j + 1. ut

Lemma 13 Let M be a sensing multi-DFA predictor in an Advance(i)-ready
configuration on a properly multilinear word α for some 1 ≤ i ≤ 4. Write α
in the form of Theorem 7. Suppose that M enters AdvanceOne(i) with hi
in some segment j, and that 4(ρ+ σ) ≤ r − l ≤ segj+1 − σ2 − 4(ρ+ σ). Then
AdvanceOne(i) will end with hi at the beginning of segment j + 1 or the
beginning of segment j + 2.

Proof Let h = hi. When AdvanceOne is entered, it moves t until t reaches h
and then implements the “tortoise and hare” routine of Algorithm 2, waiting
for a streak of r − l consecutive matches of t and h. Initially, h is at the
beginning of a string of the form wsn

′

j pj+1s
n′′

j+1pj+2 where |w| ≤ max(|pj |, |sj |),
n′ ≥ 0, and n′′ = block(h) or block(h) + 1. By Lemma 11, AdvanceOne
will not end with h in segment j. So h will reach the beginning of pj+1. If
AdvanceOne ends now, then the lemma is satisfied. So say AdvanceOne
does not end at this point.

Then consider the situation with h at the beginning of the string pj+1s
n′′

j+1pj+2.

We have h− t ≤ |w|+ |sj |, since if t has not reached sn
′

j , then h− t ≤ |w|, and

if t reached sn
′

j , then h was at most |w| ahead of it, and with both of them

in sn
′

j , they could separate by at most another |sj | before reaching identical
positions in sj , after which they would not separate further. Now let s be the
current streak. Suppose s > |pj | + 2|sj |. Then since t has moved at least s

symbols, t is in sn
′

j , past the first sj . Let c be the position of t within sj . t and
h agreed on the last |sj | symbols, so when t was last at position c within sj ,
h was at position 1 within sj , since now h is at a position following the last
position of sj . t and h agreed on those positions, so sj [c] = sj [1]. But since
the streak was not reset when h reached pj+1, t and h are still in agreement,
so sj [c] = pj+1[1], giving sj [1] = pj+1[1], a contradiction. So s ≤ |pj |+ 2|sj |.

Now, t is at most |w|+ |sj | symbols behind h, and therefore at most |w|+
|sj |+|pj+1| symbols behind the start of sn

′′

j+1. t will reach the start of the second
sj+1, since at that point the streak is at most |pj |+ 2|sj |+ |w|+ |sj |+ 2|pj+1|,
which is less than r− l. Then the procedure will not end before h reaches pj+2,

since if it did, t and h would disagree while both in sn
′′

j+1, after an |sj+1| streak

with both in sn
′′

j+1, which is impossible. So given that AdvanceOne did not
end with h at the beginning of pj+1, h will reach the beginning of pj+2.

Prediction of Infinite Words with Automata 25

Now when h reached pj+1, t was at most |w| + |sj | symbols behind h, so
when t reaches pj+1, t is at most 2(|w|+|sj |) symbols behind h. Let b = 2ρ+σ2.
Then the number of symbols remaining ahead of h in segment j+ 1 is at least

|segj+1| − 2(|w|+ |sj |)
≥ r − l + σ2 + 4(ρ+ σ)− 2(|w|+ |sj |)
= r − l + b+ 2ρ+ 4σ − 2(|w|+ |sj |)
≥ r − l + b.

So by Lemma 2, once h has moved another b symbols, h and t will agree
until h reaches pj+2, at which point they will disagree. So h and t will achieve
a streak of r − l consecutive correct guesses while in segment j + 1. Then
AdvanceOne will enter the second while loop and move t and h together
until they mismatch, which happens when h reaches the beginning of segment
j + 2. ut

Lemma 14 Let M be a sensing multi-DFA predictor in an Advance(i)-ready
configuration on a properly multilinear word α for some 1 ≤ i ≤ 4. If M enters
AdvanceMany(i), then AdvanceMany(i) will end, and it will move hi at
least once.

Proof AdvanceMany first moves outer until outer = r, and then repeatedly
calls AdvanceOne(i) and moves l and r together. Since r−l ≥ 1, there will be
at least one call to AdvanceOne. On each call to AdvanceOne, by Lemma
10, AdvanceOne will end, and it will move hi at least once. So after r − l
iterations of the loop, l will catch up with outer, AdvanceMany will end,
and it will have moved hi at least once. ut

Lemma 15 Let M be a sensing multi-DFA predictor in an Advance(i)-ready
configuration on a properly multilinear word α for some 1 ≤ i ≤ 4. Write
α in the form of Theorem 7. Suppose ρ + 2σ ≤ r − l. Then if M enters
AdvanceMany(i) with hi in some segment j, AdvanceMany(i) will end
with seg(hi) ≥ j + r − l.

Proof AdvanceMany first moves outer until outer = r, and then repeatedly
calls AdvanceOne(i) and moves l and r together. On the first call to Ad-
vanceOne, by Lemma 11, hi will be advanced from its current segment to
some subsequent segment. Since AdvanceOne leaves r − l unchanged, the
same will be true for each subsequent call to AdvanceOne. So after r − l
iterations of the loop, l will catch up with outer and AdvanceMany will end
with seg(hi) ≥ j + r − l. ut

Lemma 16 Let M be a sensing multi-DFA predictor in an Advance(i)-ready
configuration on a properly multilinear word α for some 1 ≤ i ≤ 4. Write α
in the form of Theorem 7. Suppose that M enters AdvanceMany(i) with hi
at the beginning of some segment j and ρ+ 2σ ≤ r − l ≤ block(hi)− 2ρ− σ2.
Then AdvanceMany(i) will end with hi at the beginning of segment j+r− l.

26 Tim Smith

Proof Let h = hi. We have seg(h) = j, so for every segment k ≥ j, |segk| =

|pks
d k
m e
k | ≥ d kme ≥ d

seg(h)
m e = block(h). Hence for every segment k ≥ j, we

have |segk| ≥ block(h) ≥ r− l+2ρ+σ2. Therefore we can make use of Lemma
12 whenever h is at the beginning of segment j or any subsequent segment.
Now, AdvanceMany first moves outer until outer = r, and then repeatedly
calls AdvanceOne(i) and moves l and r together. When AdvanceOne is first
called, h is at the beginning of a segment, so by Lemma 12, AdvanceOne
will end with h at the beginning of the next segment. Since AdvanceOne
leaves r − l unchanged, the same will be true for each subsequent call to
AdvanceOne. After r − l iterations of the loop, l will catch up with outer
and AdvanceMany will end, leaving h at the beginning of segment j+ r− l.

ut

Lemma 17 Let M be a sensing multi-DFA predictor in a Correction-ready
configuration on a properly multilinear word α. If M enters Correction,
then Correction will end, and it will move h4 at least once.

Proof By Lemmas 10 and 14, each call to AdvanceOne and AdvanceMany
will end, and h4 will be moved at least once. So Correction will end, and it
will have moved h4 at least once. ut

Lemma 18 Let M be a sensing multi-DFA predictor in a Correction-ready
configuration on a properly multilinear word α. Write α in the form of Theorem
7. Suppose ρ + 2σ ≤ r − l. Then if M enters Correction with h4 in some
segment j, Correction will end with seg(h4) ≥ j + 3(r − l) + 1.

Proof Correction begins by moving h1 until h1 = h4, and then runs Ad-
vanceOne(1). By Lemma 11, AdvanceOne(1) will end with seg(h1) ≥ j+1.
Next, h2 is moved until h2 = h1 and then AdvanceMany(2) is called.
Since r − l is unchanged, by Lemma 15, AdvanceMany(2) will end with
seg(h2) ≥ j + 1 + r − l. Next, h3 is moved until h3 = h2 and then Advance-
Many(3) is called. Again since r − l is unchanged, by Lemma 15, Advance-
Many(3) will end with seg(h3) ≥ j + 1 + 2(r − l). Finally, h4 is moved until
h4 = h3 and AdvanceMany(4) is called. Again since r − l is unchanged,
by Lemma 15, AdvanceMany(4) will end with seg(h4) ≥ j + 1 + 3(r − l),
completing the proof. ut

Lemma 19 Let M be a sensing multi-DFA predictor in a Correction-ready
configuration on a properly multilinear word α. Write α in the form of Theorem
7. Suppose that M enters Correction with h4 in some segment j and 4(ρ+
σ) ≤ r− l ≤ block(h4)−σ2−4(ρ+σ). Then Correction will end with h1 at
the beginning of some segment i > j, h2 at the beginning of segment i+ r − l,
h3 at the beginning of segment i+ 2(r− l), and h4 at the beginning of segment
i+ 3(r − l).

Proof Correction begins by moving h1 until h1 = h4, and then runs Ad-

vanceOne(1). Then seg(h1) = j, so we have |segj+1| = |pj+1s
d j+1

m e
j+1 | ≥

Prediction of Infinite Words with Automata 27

d j+1
m e ≥ d

seg(h1)
m e = block(h1). Therefore |segj+1| ≥ block(h1), and hence

we can make use of Lemma 13. So by Lemma 13, AdvanceOne(1) will end
with h1 at the beginning of either the next segment or of the one after it. So
now h1 is at the beginning of some segment i > j. Next, h2 is moved until
h2 = h1. Now h2 is at the beginning of segment i, so since r− l is unchanged,
by Lemma 16, AdvanceMany(2) will end with h2 at the beginning of seg-
ment i+ r− l. Next, h3 is moved until h3 = h2. Now h3 is at the beginning of
segment i+ r− l, so again since r− l is unchanged, by Lemma 16, Advance-
Many(3) will end with h3 at the beginning of segment i + 2(r − l). Finally,
h4 is moved until h4 = h3. Now h4 is at the beginning of segment i+ 2(r− l),
so again since r − l is unchanged, by Lemma 16, AdvanceMany(4) will end
with h4 at the beginning of segment i+ 3(r − l), completing the proof. ut

4.3.5 Main loop

With lemmas for the matching and correction procedures in place, we are
ready to prove the main result. We first give a lemma to establish that the
procedures will always be entered in the “ready” configurations defined above.

Lemma 20 Let M be a sensing multi-DFA predictor which implements Al-
gorithm 3 on an infinite word α. Then whenever M enters Matching, it is
in a Matching-ready configuration, whenever M enters AdvanceOne(i) or
AdvanceMany(i) for any 1 ≤ i ≤ 4, it is in an Advance(i)-ready configu-
ration, and whenever M enters Correction, it is in a Correction-ready
configuration.

Proof Let us say that M is CM-ready if it is in a configuration on α which
is both Correction-ready and Matching-ready. At the beginning of Algo-
rithm 3, all the heads are at the beginning of the input, so M is CM-ready. In
the main loop, M moves r, then calls Correction, and then calls Matching.
If M is CM-ready when it moves r, then it remains CM-ready after moving r.

Now, suppose M is CM-ready when it calls Correction. Correction
first moves h1 until it reaches h4. Since M is CM-ready, it is in an Advance(4)-
ready configuration on α, so t ≤ h4. Hence now t ≤ h1, so M is in an Ad-
vance(1)-ready configuration on α. Now M enters AdvanceOne(1). Notice
that AdvanceMany(i) and AdvanceOne(i) never move t past hi, l past r,
inner past r, or outer past r. So whenever M enters these procedures in an
Advance(i)-ready configuration, it remains in an Advance(i)-ready config-
uration upon exiting them. Next, Correction moves h2 until it reaches h1.
Since t ≤ h1, we have now t ≤ h2, so M is in an Advance(2)-ready config-
uration on α when it enters AdvanceMany(2). Next, Correction moves
h3 until it reaches h2. Since t ≤ h2, we have now t ≤ h3, so M is in an
Advance(3)-ready configuration on α when it enters AdvanceMany(3). Fi-
nally, Correction moves h4 until it reaches h3. Since t ≤ h3, we have now
t ≤ h4, so M is in an Advance(4)-ready configuration on α when it enters
AdvanceMany(4). So if M is CM-ready when it enters Correction, then
it is again CM-ready upon exiting Correction.

28 Tim Smith

Finally, notice that Matching never moves h1 past h2, h2 past h3, h3 past
h4, or h3a past h3. So if M is CM-ready when it enters Matching, then it is
again CM-ready upon exiting Matching. So Correction and Matching
are only entered when M is CM-ready, completing the proof. ut

Now we can complete the proof of Theorem 6.

Theorem 6 Let A be an alphabet. Then some sensing multi-DFA predictor
masters every multilinear word over A.

Proof Let M be a sensing 10-head DFA predictor which implements Algorithm
3. By Lemma 20, whenever M enters Matching, it is in a Matching-ready
configuration, whenever M enters AdvanceOne(i) or AdvanceMany(i) for
any 1 ≤ i ≤ 4, it is in an Advance(i)-ready configuration, and whenever
M enters Correction, it is in a Correction-ready configuration. We can
therefore make use of the lemmas proved above for the matching and correction
procedures. To see that M masters every multilinear word, take any such word
α. Suppose for contradiction that M does not master α.

First, suppose α is ultimately periodic. Then α = psω for some strings
p, s such that s 6= λ. By Lemma 5, if Matching is entered and does not
end, then M masters α. By Lemma 9, if Correction is entered and does
not end, then M masters α. So since we supposed that M does not master
α, both procedures always end. Then since r is moved at the beginning of
each iteration of the loop, and since Correction and Matching leave r− l
unchanged, eventually Correction will be entered with r − l ≥ |ps|. Then
by Lemma 9, M masters α, contradicting the supposition that it does not. So
M masters α.

So say α is properly multilinear. Then α can be written as

q
∏
n≥0

m∏
i≥1

pis
n
i

subject to the conditions of Theorem 7 and the definitions of Section 4.1.1. By
Lemma 5, if Matching is entered and does not end, then M masters α. So
since we supposed that M does not master α, Matching always ends. Now
by Lemma 17, each time Correction is entered, it will end, and it will move
h4 at least once. For each i ≥ 1, let point i be the point of the computation
during the ith iteration of the loop of Algorithm 3, after r has been moved but
before Correction has been entered. Since r is moved at the beginning of
each iteration of the loop, and since Correction and Matching leave r− l
unchanged, we have for all i ≥ 1, at point i, r − l = i. Let j = 4(ρ+ σ) + |q|.
Then for all i ≥ j, at point i, r − l ≥ 4(ρ + σ) and h4 > |q|. For each i ≥ j,
denote by f(i) the value of seg(h4) at point i. We have f(j) ≥ 1 and by Lemma
18, for all i > j, f(i) ≥ f(i − 1) + 3i + 1. Solving the recurrence, we get for

all i ≥ j, f(i) ≥ (i−j+1)(3(i−j)+2)
2 ≥ (i−j)2

2 . Then for all i ≥ j, at point i,

block(h4) ≥ (i−j)2
2m . Let k = 2m(2j + σ2 + 4ρ+ 4σ) + j. For all i ≥ k, at point

Prediction of Infinite Words with Automata 29

i, we have

block(h4) ≥ (i− j)2

2m

≥ (i− j)(k − j)
2m

= (i− j)(2j + σ2 + 4ρ+ 4σ)

= 2ij + iσ2 + 4iρ+ 4iσ − j(2j + σ2 + 4ρ+ 4σ)

= ij + iσ2 + 4iρ+ 4iσ + ij − j(2j + σ2 + 4ρ+ 4σ)

≥ ij + iσ2 + 4iρ+ 4iσ

≥ i+ σ2 + 4(ρ+ σ)

= r − l + σ2 + 4(ρ+ σ).

Then for all i ≥ k, at point i, we have 4(ρ+σ) ≤ r−l ≤ block(h4)−σ2−4(ρ+σ).
So we can make use of Lemma 19 at any point i ≥ k. Since r− l increases by 1
with each iteration of the loop, for some i ≥ k, at point i, r− l is a multiple of
m. Take any such i. Then when Correction is entered on the ith iteration of
the loop, by Lemma 19, it will exit with h1 at the beginning of some segment
d, h2 at the beginning of segment d + r − l, h3 at the beginning of segment
d+ 2(r− l), and h4 at the beginning of segment d+ 3(r− l). Then the number
of segments between h1 and h2 equals the number of segments between h2 and
h3 equals the number of segments between h3 and h4 equals r − l, which is a
multiple of m. So in the next call to Matching, by Lemma 6, M masters α,
contradicting the supposition that it does not. So M masters α. ut

5 Conclusion

In this paper, we studied the classic problem of sequence prediction from the
angle of automata and infinite words. We examined several types of automata
and sought to find out which classes of infinite words they could master. In
doing so we described novel prediction algorithms for the classes of purely
periodic, ultimately periodic, and multilinear words. Open questions in our
investigation include whether there is a DSA predictor which masters every
ultimately periodic word, and whether there is a multi-DFA predictor with-
out sensing which masters every multilinear word. Other directions for further
research would be to consider other types of automata as predictors, e.g. au-
tomata with two-way input tapes, and to attempt prediction of other classes
of infinite words, e.g. morphic words. It would also be interesting to consider
questions of computational tractability, e.g. how many guesses and how much
time is required to achieve mastery.

Acknowledgements I would like to thank my Ph.D. advisor at Northeastern, Rajmohan
Rajaraman, for his helpful comments and suggestions. The continuation of this work at
Marne-la-Vallée was supported by the Agence Nationale de la Recherche (ANR) under the
project EQINOCS (ANR-11-BS02-004).

30 Tim Smith

References

1. Angluin, D., Fisman, D.: Learning regular omega languages. In: P. Auer, A. Clark,
T. Zeugmann, S. Zilles (eds.) Algorithmic Learning Theory, Lecture Notes in Computer
Science, vol. 8776, pp. 125–139. Springer International Publishing (2014). DOI 10.1007/
978-3-319-11662-4 10. URL http://dx.doi.org/10.1007/978-3-319-11662-4_10

2. Angluin, D., Smith, C.H.: Inductive inference: Theory and methods. ACM Comput.
Surv. 15(3), 237–269 (1983). DOI 10.1145/356914.356918. URL http://doi.acm.org/

10.1145/356914.356918
3. Blackwell, D.: Minimax vs. Bayes prediction. Probability in the Engineering and

Informational Sciences 9, 53–58 (1995). DOI 10.1017/S0269964800003685. URL
http://journals.cambridge.org/article_S0269964800003685

4. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. In-
formation and Control 28(2), 125 – 155 (1975). DOI http://dx.doi.org/10.1016/
S0019-9958(75)90261-2. URL http://www.sciencedirect.com/science/article/pii/

S0019995875902612
5. Broglio, A., Liardet, P.: Predictions with automata. In: Symbolic Dynamics and its Ap-

plications, Contemporary Mathematics, vol. 135, pp. 111–124. American Mathematical
Society (1992)

6. Cerruti, U., Giacobini, M., Liardet, P.: Prediction of binary sequences by evolving finite
state machines. In: P. Collet, C. Fonlupt, J.K. Hao, E. Lutton, M. Schoenauer (eds.)
Artificial Evolution, Lecture Notes in Computer Science, vol. 2310, pp. 42–53. Springer
Berlin Heidelberg (2002). DOI 10.1007/3-540-46033-0 4. URL http://dx.doi.org/10.

1007/3-540-46033-0_4
7. Drucker, A.: High-confidence predictions under adversarial uncertainty. TOCT 5(3), 12

(2013). DOI 10.1145/2493252.2493257. URL http://doi.acm.org/10.1145/2493252.

2493257
8. Endrullis, J., Hendriks, D., Klop, J.W.: Degrees of Streams. Integers, Electronic Journal

of Combinatorial Number Theory 11B(A6), 1–40 (2011). Proc. Leiden Numeration
Conf. 2010

9. Feder, M., Merhav, N., Gutman, M.: Universal prediction of individual sequences. IEEE
Transactions on Information Theory 38, 1258–1270 (1992)

10. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14(2),
389–418 (1967). DOI 10.1145/321386.321403

11. Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–
474 (1967). URL http://groups.lis.illinois.edu/amag/langev/paper/gold67limit.

html
12. Hibbard, B.: Adversarial sequence prediction. In: Proceedings of the 2008 Conference

on Artificial General Intelligence 2008: Proceedings of the First AGI Conference, pp.
399–403. IOS Press, Amsterdam, The Netherlands, The Netherlands (2008). URL http:

//dl.acm.org/citation.cfm?id=1566174.1566212
13. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Origins

and directions. Theor. Comput. Sci. 412(1-2), 83–96 (2011). DOI 10.1016/j.tcs.2010.
08.024

14. Hromkovič, J.: One-way multihead deterministic finite automata. Acta Informatica
19(4), 377–384 (1983). DOI 10.1007/BF00290734. URL http://dx.doi.org/10.1007/

BF00290734
15. Johansen, P.: Inductive inference of ultimately periodic sequences. BIT Numerical Math-

ematics 28(3), 573–580 (1988). DOI 10.1007/BF01941135. URL http://dx.doi.org/

10.1007/BF01941135
16. Leblanc, B., Lutton, E., Allouche, J.P.: Inverse problems for finite automata: A solution

based on genetic algorithms. In: J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer,
D. Snyers (eds.) Artificial Evolution, Lecture Notes in Computer Science, vol. 1363, pp.
157–166. Springer Berlin Heidelberg (1998). DOI 10.1007/BFb0026598. URL http:

//dx.doi.org/10.1007/BFb0026598
17. Legg, S.: Is there an elegant universal theory of prediction? In: Algorithmic Learning

Theory, 17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006,
Proceedings, pp. 274–287 (2006). DOI 10.1007/11894841 23. URL http://dx.doi.org/

10.1007/11894841_23

http://dx.doi.org/10.1007/978-3-319-11662-4_10
http://doi.acm.org/10.1145/356914.356918
http://doi.acm.org/10.1145/356914.356918
http://journals.cambridge.org/article_S0269964800003685
http://www.sciencedirect.com/science/article/pii/S0019995875902612
http://www.sciencedirect.com/science/article/pii/S0019995875902612
http://dx.doi.org/10.1007/3-540-46033-0_4
http://dx.doi.org/10.1007/3-540-46033-0_4
http://doi.acm.org/10.1145/2493252.2493257
http://doi.acm.org/10.1145/2493252.2493257
http://groups.lis.illinois.edu/amag/langev/paper/gold67limit.html
http://groups.lis.illinois.edu/amag/langev/paper/gold67limit.html
http://dl.acm.org/citation.cfm?id=1566174.1566212
http://dl.acm.org/citation.cfm?id=1566174.1566212
http://dx.doi.org/10.1007/BF00290734
http://dx.doi.org/10.1007/BF00290734
http://dx.doi.org/10.1007/BF01941135
http://dx.doi.org/10.1007/BF01941135
http://dx.doi.org/10.1007/BFb0026598
http://dx.doi.org/10.1007/BFb0026598
http://dx.doi.org/10.1007/11894841_23
http://dx.doi.org/10.1007/11894841_23

Prediction of Infinite Words with Automata 31

18. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (1989)

19. O’Connor, M.G.: An unpredictability approach to finite-state randomness. J. Comput.
Syst. Sci. 37(3), 324–336 (1988). DOI 10.1016/0022-0000(88)90011-6. URL http:

//dx.doi.org/10.1016/0022-0000(88)90011-6

20. Sedgewick, R., Szymanski, T.G., Yao, A.C.: The complexity of finding cycles in periodic
functions. SIAM Journal on Computing 11(2), 376–390 (1982). DOI 10.1137/0211030

21. Shubert, B.: Games of prediction of periodic sequences. Tech. rep., United States Naval
Postgraduate School (1971)

22. Smith, T.: On Infinite Words Determined by Stack Automata. In: FSTTCS 2013,
Leibniz International Proceedings in Informatics (LIPIcs), vol. 24, pp. 413–424. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013). DOI 10.4230/
LIPIcs.FSTTCS.2013.413

23. Smith, T.: Prediction of infinite words with automata. In: Computer Science — Theory
and Applications, CSR 2016. Springer-Verlag, Berlin, Heidelberg (2016). To appear.

24. Solomonoff, R.: A formal theory of inductive inference. part i. Information and Control
7(1), 1 – 22 (1964). DOI http://dx.doi.org/10.1016/S0019-9958(64)90223-2. URL http:

//www.sciencedirect.com/science/article/pii/S0019995864902232

25. Wagner, K., Wechsung, G.: Computational Complexity. Mathematics and its Applica-
tions. Springer (1986)

http://dx.doi.org/10.1016/0022-0000(88)90011-6
http://dx.doi.org/10.1016/0022-0000(88)90011-6
http://www.sciencedirect.com/science/article/pii/S0019995864902232
http://www.sciencedirect.com/science/article/pii/S0019995864902232

	Introduction
	Preliminaries
	Prediction of periodic words
	Prediction of multilinear words
	Conclusion

